document.getElementById('index-articles-list').innerHTML = `
  • COVID-19 detection based on pre-trained deep networks and LSTM model using X-ray images enhanced contrast with artificial bee colony algorithm
    基于预训练深度网络和LSTM模型的COVID-19检测方法(使用人工蜂群算法增强X光图像对比度)

    Mehmet Bilal Er

    Expert systems. 2022 Nov 3:e13185. DOI:10.1111/exsy.13185

  • Federated learning based Covid-19 detection
    基于联合学习的新冠检测方法研究

    Deepraj Chowdhury,Soham Banerjee,Madhushree Sannigrahi et al.

    Expert systems. 2022 Nov 2:e13173. DOI:10.1111/exsy.13173

  • Models for MAGDM with dual hesitant q-rung orthopair fuzzy 2-tuple linguistic MSM operators and their application to COVID-19 pandemic
    基于双犹豫q-正交直项语言MSM算子的COVID-19大流行多属性群决策模型研究

    Sumera Naz,Muhammad Akram,Arsham Borumand Saeid et al.

    Expert systems. 2022 Apr 16:e13005. DOI:10.1111/exsy.13005

  • Detection of COVID-19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods
    基于贝叶斯超参数优化和深度特征选择方法的COVID-19及其肺部分期检测

    Nedim Muzoğlu,Ahmet Mesrur Halefoğlu,Muhammed Onur Avci et al.

    Expert systems. 2022 Sep 26:e13141. DOI:10.1111/exsy.13141

  • Artificial neural networks for prediction of COVID-19 in India by using backpropagation
    印度利用反向传播预测COVID-19的人工神经网络方法

    Balakrishnama Manohar,Raja Das

    Expert systems. 2022 Aug 2:e13105. DOI:10.1111/exsy.13105

  • `; document.getElementById('index-articles-more').href = `https://i.iikx.com/journal/1468-0394.html`; document.getElementById('index-articles-more').innerHTML='更多内容'; document.getElementById('index-articles-more').style="float:right;background:var(--primary-color);color:#fff;font-size:13px;border-radius:5px;padding:0px 10px;margin-right:5px;line-height:1.7"; document.getElementsByClassName('index-artcles')[0].style.display = 'block'; document.getElementById('showJournalIndexUrl').style.display = 'block'; document.querySelector('#showJournalIndexUrl a').href = `https://i.iikx.com/journal/1468-0394.html`;