document.getElementById('index-articles-list').innerHTML = `
  • Development of an atomic cluster expansion potential for iron and its oxides
    铁及其氧化物原子团簇扩展势的开发

    Baptiste Bienvenu,Mira Todorova,Jörg Neugebauer et al.

    npj computational materials. 2025;11(1):81. DOI:10.1038/s41524-025-01574-w

  • Constructing multicomponent cluster expansions with machine-learning and chemical embedding
    利用机器学习和化学嵌入构建多组分团展开

    Yann L Müller,Anirudh Raju Natarajan

    npj computational materials. 2025;11(1):60. DOI:10.1038/s41524-025-01543-3

  • A machine-learning framework for accelerating spin-lattice relaxation simulations
    加速自旋晶格弛豫模拟的机器学习框架

    Valerio Briganti,Alessandro Lunghi

    npj computational materials. 2025;11(1):62. DOI:10.1038/s41524-025-01547-z

  • Outlier-detection for reactive machine learned potential energy surfaces
    反应式机器学习势能面中的异常值检测

    Luis Itza Vazquez-Salazar,Silvan Käser,Markus Meuwly

    npj computational materials. 2025;11(1):33. DOI:10.1038/s41524-024-01473-6

  • Effect of Hubbard U-corrections on the electronic and magnetic properties of 2D materials: a high-throughput study
    Hubbard U校正对二维材料电子和磁性性质的影响:一种高通量研究方法

    Sahar Pakdel,Thomas Olsen,Kristian S Thygesen

    npj computational materials. 2025;11(1):18. DOI:10.1038/s41524-024-01503-3

  • `; document.getElementById('index-articles-more').href = `https://i.iikx.com/journal/2057-3960.html`; document.getElementById('index-articles-more').innerHTML='更多内容'; document.getElementById('index-articles-more').style="float:right;background:var(--primary-color);color:#fff;font-size:13px;border-radius:5px;padding:0px 10px;margin-right:5px;line-height:1.7"; document.getElementsByClassName('index-artcles')[0].style.display = 'block'; document.getElementById('showJournalIndexUrl').style.display = 'block'; document.querySelector('#showJournalIndexUrl a').href = `https://i.iikx.com/journal/2057-3960.html`;