另一方面,由于宽带隙半导体中缺陷电子捕获截面分布范围较宽,超浅能级和深能级界面态都可能影响器件的频率色散和电流崩塌。因此,在更宽能量范围内评估界面态变得非常有意义。恒定电容深能级瞬态傅里叶光谱技术可实现10~400K温度范围内的测试,为上述需求提供了有效的表征解决方案。但多层材料中界面态和离散能级缺陷的检测密度通常被耦合,使介质/III-N界面的缺陷分析更加复杂,需要利用界面态分布函数分离界面态和离散缺陷能级。虽然基于DIGS理论的U型模型适合连续能级的界面态分布,但在较宽的能量范围上仍然有一些限制。
该研究工作证明了低热预算工艺是实现高质量界面的有效手段之一,包括:LPCVD-SiNx生长温度从常规780℃降低到650℃,欧姆合金温度从850℃降低到780℃。工作难点在于降低温度窗口且保证高质量薄膜和欧姆接触。最终在LPCVD-SiNx和GaN之间实现2.5-5埃米原子级平整界面,界面态密度在ET=30 meV下约1.5×1013 cm-2eV-1,ET=1 eV下约4×1011~1.2×1012 cm-2eV-1水平。团队创新性提出了适用于较宽能量范围的基于物理参数的界面态U型分布函数,实现了多层材料中离散能级与界面态的有效分离。该成果以Suppression and characterization of interface states at low-pressure-chemical-vapor-deposited SiNx/III-nitride heterostructures为题发表在Applied Surface Science上。
该工作得到了国家自然科学基金重大仪器项目、重点项目、面上项目和中科院前沿重点项目等资助。
论文连接
研究团队单位:微电子研究所