2025年4月6日 星期日 03:35:07 农历三月初九 手机版 客户端

SPSS图文详解_有序分类变量的一致性检验——加权Kappa

SPSS图文详解_有序分类变量的一致性检验——加权Kappa

  SPSS:有序分类变量的一致性检验——加权Kappa。对于有序分类变量的一致性检验,应该使用weighted kappa(加权kappa)系数。

  一、问题与数据

  某医院拟分析不同放射科医生对疾病严重程度诊断的一致性。现招募两位放射医生分别判断50位受试者的MRI检查结果,并给予Grade I(最轻)到Grade V(最重)五个等级的临床诊断。这两位放射科医生分别命名为Radiologist 1和Radiologist 2,判断的是同一组MRI检查结果,编号统一,部分研究数据如下:

  注释:为了方便统计分析,我们分别将Grade I、Grade II、GradeIII、Grade IV和Grade V赋值为1、2、3、4和5,如上图右侧所示。

  二、对问题的分析

  在本研究中,研究者拟探讨不同放射科医生对疾病严重程度(5分类)诊断的一致性。对于这种有序分类变量的一致性检验,我们推荐使用weighted kappa分析。一般来说,采用weighted kappa分析的研究设计需要满足以下5项假设:

  假设1:判定结果是分类变量且互斥。如本研究中受试者MRI的诊断结果为Grade I到Grade V五个等级,属于分类变量,并且相互排斥。

  假设2:要求观测结果配对,即不同观测者判定的对象相同。如本研究中,两位放射科医生诊断的是同一组受试者的MRI,编号统一。

  假设3:每个观察对象可能被判定的结果种类相同。如本研究中每位受试者的诊断结果都可能是Grade I到Grade V五个等级中的一个。

  假设4:观测者之间相互独立。这要求不同观测者独立完成结果判定,相互不干扰。

  假设5:由固定的两位观测者完成所有判定。如本研究中由两位放射科医生分别诊断50份MRI检查结果,中途不换人。

  根据研究设计,我们认为本研究符合weighted kappa系数的5项假设,可以采用该分析方法进行一致性评价。

  三、SPSS操作

  1. 在主菜单点击Analyze→DescriptiveStatistics→Crosstabs

  出现下图:

  2. 分别将Radiologist 1和Radiologist 2变量放入Row(s)和Column(s)栏

  3. 点击OK

  4. 在主菜单点击Analyze→Scale→Weighted Kappa

  出现下图:

  5. 分别将Radiologist 1和Radiologist 2变量放入Rating 1和Rating 2栏

  6. 在Weight Type栏中点选Linear(一般来说,Linear是SPSS的默认设置,若不是,我们可以手动设置)

  注释:SPSS默认的线性加权方法(Linear weight type)为wi = 1 – i / (k – 1),其中,i是级别距离,k是分类数量。该加权方法认为每两个级别之间的差异是相等的,即如果两位观察者判定的结果差3级,那么他们之间的不一致程度就刚好是差1级情况的3倍。

  而平方加权方法(Quadratic weight type)的公式是wi= 1 – i2/ (k – 1)2,其中,i是级别距离,k是分类数量。这种加权方法根据级别距离,缩小级别距离小的判定不一致程度,而同时放大级别距离大的判定不一致程度。

  我们需要根据研究设计判断是否需要根据级别距离缩放不一致程度,从而选择加权方法。在本研究中,我们认为级别差异对不一致程度的影响相同,即选择线性加权方法。

  7. 点击OK。

  四、结果解释

  1. 一般结果

  在分析weighted kappa系数之前,我们有必要了解一下研究数据的基本情况,如下:

  从上表可以看出,两位放射科医生对38位受试者的MRI检查诊断意见一致(对角线上的数据),如下标注部分:

  但同时,这两位放射科医生在对另12位受试者的诊断上存在不一致,即下表中不在对角线上的数据,如下标注部分:

  2. Weighted kappa系数

  在了解了数据的基本情况之后,我们主要分析本研究的weighted kappa结果。经上述操作,SPSS输出如下:

  从上表可知,本研究的weighted kappa=0.803。与Cohen's kappa系数一致,weighted kappa也分布在-1到1之间。

  若weighted kappa系数小于0,说明观察一致率小于机遇一致率,在实际研究中很少出现。若weighted kappa系数等于0,说明观察一致率等于机遇一致率,结果完全由机遇因素导致。若weighted kappa系数大于0,说明研究对象之间存在一定的一致性,weighted kappa系数越接近1,一致性越大。

  那么,本研究中weighted kappa系数为0.803,说明一致性如何呢?一般来说,weighted kappa系数提示的一致性强度并没有统一标准,既往学者多根据经验进行判断,为了方便大家理解,我们向大家介绍一种比较公认的划分标准:

  表1. Weighted kappa系数的一致性含义

  从上表可知,本研究中weighted kappa系数为0.803,说明具有较强的一致性。但是,与Cohen's kappa系数一样,由于研究数据边际分布程度的影响,我们也不能轻易地根据表1直接对比不同研究的weighted kappa系数,只能在具有相同边际分布的数据之间进行比较。

  此外,SPSS输出weighted kappa系数的统计检验结果如下标注部分:

  提示,weighted kappa系数与0的差异具有统计学意义(P<0.001)。同时,该表格也提示weighted kappa系数的95%置信区间,如下标注部分:

  可见,本研究中weighted kappa系数的95%置信区间为0.689-0.916。即,本研究weighted kappa系数为0.803(95% CI为0.689-0.916)。

  五、撰写结论

  本研究采用线性加权的weighted kappa系数分析两位放射科医生对50位受试者疾病严重程度诊断的一致性。结果显示,这两位医生对38位受试者的MRI检查诊断意见一致,对12位受试者不一致。总的来说,这两位医生诊断结果的weighted kappa系数为0.803(95% CI为0.689-0.916),P<0.001,具有较强的一致性。

参考标签

声明:本文转载仅出于学习和传播信息所需,并不意味着代表本站观点或证实其内容的真实性;其他网站或个人转载使用须保留本站所注“来源”,并自负相关法律责任;如作者不希望被转载或其他事宜,请及时联系我们!